Tunable pattern-free graphene nanoplasmonic waveguides on trenched silicon substrate

نویسندگان

  • Jiajiu Zheng
  • Longhai Yu
  • Sailing He
  • Daoxin Dai
چکیده

Graphene has emerged as a promising material for active plasmonic devices in the mid-infrared (MIR) region owing to its fast tunability, strong mode confinement, and long-lived collective excitation. In order to realize on-chip graphene plasmonics, several types of graphene plasmonic waveguides (GPWGs) have been investigated and most of them are with graphene ribbons suffering from the pattern-caused edge effect. Here we propose a novel nanoplasmonic waveguide with a pattern-free graphene monolayer on the top of a nano-trench. It shows that our GPWG with nanoscale light confinement, relatively low loss and slowed group velocity enables a significant modulation on the phase shift as well as the propagation loss over a broad band by simply applying a single low bias voltage, which is very attractive for realizing ultra-small optical modulators and optical switches for the future ultra-dense photonic integrated circuits. The strong light-matter interaction as well as tunable slow light is also of great interest for many applications such as optical nonlinearities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear coupling in graphene-coated nanowires

We propose and analyze nonlinear coupler based on a pair of single mode graphene-coated nanowires. Nonlinear wave interactions in such structure are analyzed by the coupled mode equations derived from the unconjugated Lorentz reciprocity theorem. We show that the routing of plasmons in the proposed structure can be controlled by the input power due to the third order nonlinear response of graph...

متن کامل

On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides.

A hybrid integration of nanoplasmonic antennas with silicon nitride waveguides enables miniaturized chips for surface-enhanced Raman spectroscopy at visible and near-infrared wavelengths. This integration can result in high-throughput SERS assays on low sampling volumes. However, current fabrication methods are complex and rely on electron-beam lithography, thereby obstructing the full use of a...

متن کامل

Laser ablation- and plasma etching-based patterning of graphene on silicon-on-insulator waveguides.

We present a new approach to remove monolayer graphene transferred on top of a silicon-on-insulator (SOI) photonic integrated chip. Femtosecond laser ablation is used for the first time to remove graphene from SOI waveguides, whereas oxygen plasma etching through a metal mask is employed to peel off graphene from the grating couplers attached to the waveguides. We show by means of Raman spectro...

متن کامل

Tunable beam steering enabled by graphene metamaterials.

We demonstrate tunable mid-infrared (MIR) beam steering devices based on multilayer graphene-dielectric metamaterials. The effective refractive index of such metamaterials can be manipulated by changing the chemical potential of each graphene layer. This can arbitrarily tailor the spatial distribution of the phase of the transmitted beam, providing mechanisms for active beam steering. Three dif...

متن کامل

Origin of doping in quasi-free-standing graphene on silicon carbide.

We explain the robust p-type doping observed for quasi-free-standing graphene on hexagonal silicon carbide by the spontaneous polarization of the substrate. This mechanism is based on a bulk property of SiC, unavoidable for any hexagonal polytype of the material and independent of any details of the interface formation. We show that sign and magnitude of the polarization are in perfect agreemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015